

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

Unlabeled

atch ID: SA-240611-42043 ype: Finished Product - halable Matrix: Plant - F prayed Unit Mass (g):		Received: 06/11/ Completed: 06/1			
			Summary		
			Test	Date Tested	Status
			Cannabinoids	06/14/2024	Tested
			Moisture	06/14/2024	Tested
0.133 %	29.4 %	41.1 %	8.12 %	Not Tested	Yes
Total <u>A9-THC</u>	Total CBD	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
annabinoids b _{nalyte}	oy HPLC-PDA a دەر (%)	nd GC-MS/MS	PQ %)	Result (% dry)	Normalization Result (mg/g dry)
annabinoids b nalyte 3C	by HPLC-PDA a Loc (%)	nd GC-MS/MS	DQ (%) 028	Result (% dry) 0.169	Normalization Result (mg/g dry) 1.69
annabinoids b nalyte BC BCA	oy HPLC-PDA a Loc (%) 0.000 0.001	nd GC-MS/MS	DQ (%) 028 054	Result (% dry) 0.169 0.321	Normalization Result (mg/g dry) 1.69 3.21
annabinoids b nalyte BC BCA BCV	oy HPLC-PDA a Loc (%) 0.000 0.001 0.000	nd GC-MS/MS	DQ (%) 028 054 018	Result (% dry) 0.169 0.321 ND	Normalization Result (mg/g dry) 1.69 3.21 ND
annabinoids b nalyte 3C 3CA 3CV 3D	oy HPLC-PDA a Loc (%) 0.000 0.001 0.000 0.000	nd GC-MS/MS	DQ (%) 028 054 0018 024	Result (% dry) 0.169 0.321 ND 29.4	Normalization Result (mg/g dry) 1.69 3.21 ND 294
annabinoids b nalyte 3C 3CA 3CV 3D 3DA	Dy HPLC-PDA a Lot (%) 0.000 0.001 0.000 0.000 0.000 0.000	nd GC-MS/MS	DQ (%) 028 054 018 024 0013	Result (% dry) 0.169 0.321 ND 29.4 0.00784	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784
annabinoids b nalyte 3C 3CA 3CV 3D 3DA 3DV	Dy HPLC-PDA a Lot (%) 0.000 0.001 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS	DQ (%) 028 054 0018 024 0013 0018	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27
annabinoids b nalyte 3C 3CA 3CA 3CA 3CA 3DA 3DA 3DA 3DA 3DV 3DVA	by HPLC-PDA a Loc (%) 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS	DQ (%) 028 054 0018 024 0013 0018 006	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND
annabinoids b nalyte BC BCA BCA BCA BDA BDA BDA BDV BDVA BG	Dy HPLC-PDA a Loc (%) 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D 195 10 10 10 10 10 10 10 1	DQ (%) 028 054 0018 024 0013 0018 006 0017	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12
annabinoids b nalyte BC BCA BCA BCV BD BDA BDA BDV BDVA BGA BGA	by HPLC-PDA a Lot (%) 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D LC 195 0.0 81 0.0 81 0.0 0 81 0.0 0 81 0.0 0 143 0.0 143 0.0 0 143 0.0 0 157 0.0 0 49 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DQ (%) 028 054 0018 024 0013 0018 006 0017 0015	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7
annabinoids b nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	Dy HPLC-PDA a Lot (%) 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D 195 0 1 0 0 1 0 0 1 0 0	DQ (%) 028 054 0018 0024 0013 0018 006 0017 0015 0033	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND
annabinoids b nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BCA BL BLA	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D D D D D D D D D D D D D D D D D D D	DQ (%) 028 054 0018 024 0013 0018 006 0017 0015 0033 037	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.312 7.47 ND ND ND	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND 3.12 74.7 ND ND ND
annabinoids b nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BCA BCA BL BLA BN	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D D D D D D D D D	DQ (%) 028 054 0018 0024 0013 0018 006 0017 0015 0033 0037 0017	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.312 7.47 ND ND ND ND	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND
annabinoids b nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BCA BL BLA BN BNA	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D D C D D D D D D D D D D D D D D D D	DQ (%) 028 054 0018 024 0013 0018 006 0017 0015 0033 037	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.312 7.47 ND ND ND	Normalization Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND 3.12 74.7 ND ND ND
annabinoids b nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BL BLA BLA BN BNA BT	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D D D D D D D D D D D D D D D D D D D	DQ (%) 028 054 0018 024 0013 0018 006 0017 0015 0033 037 0017 0017	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND
annabinoids b nalyte BC BCA BCV BDA BDA BDA BDA BDA BDA BDA BA BBA BLA BLA BLA BN BNA BT BT- B-THC	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D D D D D D D D D D D D D D D D D D D	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND
annabinoids b nalyte BC BCA BCA BCV BDA BDA BDA BDA BDA BDA BDA BA BBA BLA BLA BLA BLA BNA BT B-THC B-THC	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 056 0.0 056 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 056 0.0 04 0.0 04 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 0031 0022	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND
Cannabinoids b nalyte BC BCA BCV BDA BDA BDA BDV BDVA BGA BGA BLA BLA BLA BNA BT 8-THC 8-THC 8-THCP 8-THCV	Dy HPLC-PDA a Lot (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 056 0.0 056 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 058 0.0 059 0.0 050 0.0 051 0.0 052 0.0 053 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 0031 002 002	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND ND </td
annabinoids b nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BCA BA BA BLA BLA BLA BLA BLA BLA BLA BLA	Dy HPLC-PDA a Lot (%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 056 0.0 056 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 058 0.0 059 0.0 050 0.0 051 0.0 052 0.0 053 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 0031 002 002 002 002 002 002	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.0407 ND 0.0854	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND 0.407 ND 0.854
annabinoids b nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BCA BCA BA BA BA BA BA BA BA BA BA BA BA BA BA	Py HPLC-PDA a Lot (%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 056 0.0 056 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 058 0.0 059 0.0 050 0.0 051 0.0 052 0.0 053 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 0031 002 002 002 002 002 002 002 002 002 002 002 002 002	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.0407 ND 0.0854 0.0545	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND 0.407 ND 0.854 0.545
annabinoids b nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BA BA BA BA BA BNA BT B-THC B-THCP B-THCA D-THCP	Py HPLC-PDA a Lot (%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 056 0.0 056 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 056 0.0 057 0.0 058 0.0 059 0.0 050 0.0 051 0.0 052 0.0 053 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 00303 0037 0017 0018 0054 0031 002 002 002 002 002 002 002 002 002 002 002	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.0407 ND 0.0854 0.0545 3.11	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND ND ND ND ND ND ND ND 3.12 74.7 ND ND ND ND ND 0.407 ND 0.854 0.545 31.1
annabinoids b nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BA BBA BBA BBA	Py HPLC-PDA a Lot (%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 061 0.0 076 0.0 076 0.0 84 0.0 67 0.0 69 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 0031 002 002 002 002 002 002 002 002 002 002 002 002 002	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.0407 ND 0.0854 0.0545	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND 0.407 ND 0.854 0.545
	Py HPLC-PDA a Lot (%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	nd GC-MS/MS D LC 195 0.0 81 0.0 06 0.0 081 0.0 043 0.0 057 0.0 12 0.0 056 0.0 057 0.0 12 0.0 056 0.0 056 0.0 057 0.0 12 0.0 056 0.0 061 0.0 076 0.0 076 0.0 84 0.0 67 0.0 69 0.0	Q 028 054 018 024 013 018 006 0017 0015 0033 0037 0017 0018 0054 00303 0037 0017 0018 0054 0031 002	Result (% dry) 0.169 0.321 ND 29.4 0.00784 0.127 ND 0.312 7.47 ND 0.0854 0.0545 3.11 ND	Result (mg/g dry) 1.69 3.21 ND 294 0.0784 1.27 ND 3.12 74.7 ND 0.545 31.1 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 06/14/2024

Tested By: Nicholas Howard Scientist Date: 06/14/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.